Meson Spectroscopy at CLAS

Raffaella De Vita INFN – Genova for the CLAS Collaboration

> EINN09 Milos, Greece 2 October 2009

Why hadron spectroscopy?

- QCD is responsible for most of the observed mass in the universe
- Precise determination of the spectrum and internal structure of hadrons is necessary to reach a deep understanding of QCD
 - o Revealing the nature of the mass of the hadrons
 - o Identify the relevant degrees of freedom
 - o Understand the origin of confinement
 - o Validate LQCD predictions
- Meson production is a key tool to investigate these issues

Raffaella De Vita, INFN-Genova

Meson Spectroscopy at CLAS

Meson Production at CLAS

Dynamic properties of constituent partons

- ★ Vector meson photoproduction at large -t
- ***** Vector meson electroproduction at large Q^2

Exclusive electro- and photo- scattering in a wide kinematic range

Beyond the standard quark model

Light meson spectroscopy and PWA with CLAS

High statistics, high resolution, measurement of multi-particle exclusive final states

Recent Results from Photoproduction of $\pi^+\pi^-$ Pairs on the Proton:

Photoproduction of the $f_0(980)$

Raffaella De Vita, INFN-Genova

Meson Spectroscopy at CLAS

The CLAS Spectrometer

- magnetic spectrometer based on six-coil toroidal field
- large kinematical coverage
- high luminosity: 10³⁴cm⁻²s⁻¹
- simultaneous measurement of exclusive and inclusive reactions
- central field-free region well suited for the insertion of a polarized target
- Bremsstrahlung photon tagger

CEBAF Large Acceptance Spectrometer

$\pi^+\pi^-$ Photoproduction

G11 Experiment:

- Bremsstrahlung photon beam: 1.6-3.8 GeV
- 40 cm long liquid hydrogen target
- $\sim 7 \cdot 10^9$ triggers
- Integrated Luminosity ~ 80 pb⁻¹
- Proton and $\pi^{\scriptscriptstyle +}$ detected in CLAS
- Reaction $\gamma p \rightarrow p \pi^+ \pi^-$ isolated via missing mass
- Analysis focused on high energy (3.0-3.8 GeV) and low –t (0.4-1.0 GeV²) region

Partial Wave Analysis

1) Extraction of Moments of the Di-Pion Angular Distribution

$$\langle Y_{\lambda\mu}\rangle(E_{\gamma},t,M) = \frac{1}{\sqrt{4\pi}}\int d\Omega_{\pi} \frac{d\sigma}{dt dM d\Omega_{\pi}} Y_{\lambda\mu}(\Omega_{\pi})$$

- Moments are expanded on a set of basis function and weighted with Monte Carlo events to account for detector acceptance and efficiency
- Moments are then fitted to the data using an unbinned likelihood procedure

2) Evaluation of Partial Waves from Experimental Moments

 Moments can be expressed as bilinear combination of partial wave amplitudes

$$\begin{split} \langle Y_{00} \rangle &= N \left[|S|^2 + |P_-|^2 + |P_0|^2 + |P_+|^2 + |D_-|^2 \right. \\ &+ |D_0|^2 + |D_+|^2 + |F_-|^2 + |F_0|^2 + |F_+|^2 \right] \end{split}$$

- Partial Waves are parameterized using Dispersion Relations in term of known $\pi\pi$ phase shifts and unknown coefficients and fitted to the experimental moments
- Partial Wave cross sections are derived and can be compared with models

Raffaella De Vita, INFN-Genova

Moments of the Di-Pion Angular Distribution

Raffaella De Vita, INFN-Genova

Meson Spectroscopy at CLAS

Partial Wave Amplitudes

$\gamma p \rightarrow p \pi^+ \pi^-$

- ***** M($\pi^+\pi^-$) spectrum below 1.5 GeV:
 - •P-wave: ρ meson
 - •D-wave: f₂(1270)
 - •S-wave: σ, f₀(980) and f₀(1320)
- Moments of the 2-pion angular distribution extracted via likelihood fit of data
- * Partial Wave fitted to experimental moments

***** Known states well reproduced, e.g. ρ(770)

 $\begin{array}{l} 3.4 \ {\rm GeV} < {\rm E}_{\gamma} < 3.6 \ {\rm GeV} \\ 0.5 \ {\rm GeV}^2 < -t < 0.6 \ {\rm GeV}^2 \end{array}$

Raffaella De Vita, INFN-Genova

Meson Spectroscopy at CLAS

Ongoing Program

G12: Search for new forms of hadronic matter in photoproduction on the proton

- Data taking completed in 2008
- Photon Energy up to 5.4 GeV
- More than 26 billion triggers (2-prong + 3-prong)
- Total Luminosity: 68 pb⁻¹
- Several exclusive channels are being analyzed

EG6: Meson spectroscopy in coherent production on 4He

- 6 GeV electron beam on high pressure gas target
- Scattered electron at very small angles \rightarrow quasi-real photo-production
- Search for exotics in $\pi \eta$, $\pi \eta$ final states
- Recoiling nucleus detected in Radial TPC
- Hadronic final state detected in CLAS
- Data taking in progress-K+K-(n)

CLAS12

A Forward Photon Tagger for CLAS12

Use quasi-real photo-production with detection of scattered electrons at "0" degrees (LowQ, post-target tagging):

- electron beam on target, scattered electrons at small angles are detected
- hadronic final state is detected in CLAS12
- photon linear polarization ~ 65% 20%
- luminosity will be limited by the forward tagger
- electromagnetic background

Electron detection via Tracker+Calorimeter for determination of angles and energy

PbWO4 Calorimeter 424 Crystals

Electron Detector	
E'	0.5-4GeV
ν	7-10.5 GeV
θ	1.9-7 deg
Q ²	0.006 – 0.6 GeV ²
Photon Flux	5 x 10 ⁷ γ /s @ L _e =10 ³⁵
Rate	70 MHz @ L _e =10 ³⁵

Raffaella De Vita, INFN-Genova

Meson Spectroscopy at CLAS

Photoproduction with CLAS12

Availability of tagged photon beam in CLAS12 will open new possibilities for high quality physics beyond the already approved program:

- Meson spectroscopy
 - Partial Wave Analysis on H target
 - Spectroscopy on He4 and other gas targets
- Hadron spectroscopy
 - Heavy mass baryon resonances (Cascades)
- Compton scattering
- Meson polarizabilities
- Large *-t* physics

Feasibility of forward tagger is presently being studied and conceptual design of electron detector is being developed

Raffaella De Vita, INFN-Genova

Summary

Rich physics program in meson spectroscopy with CLAS:

- Meson spectrum investigated in photoproduction
- PWA (Moments + Dispersion relations) feasible in CLAS
- First results published, experimental program continues...
- Present program will be extended with CLAS12 using quasi-real photoproduction

Better understanding of hadrons structure
Progress in understanding confinement in QCD and the role of constituent quarks and gluons in the description of the non-perturbative regime

Raffaella De Vita, INFN-Genova

Meson Spectroscopy at CLAS

Hybrid Mesons

How can we find hints of the gluons that bind the quarks??

Lattice QCD calculations predict masses around 2 GeV, a range that can be explored at JLab

Search for Exotics in Photoproduction

★ Photoproduction: exotic J^{PC} are more likely produced by S=1 probe

Production rate for exotics is expected to be comparable to regular mesons

> Few data (so far) but expected similar production rate as regular mesons

Raffaella De Vita, INFN-Genova

Meson Spectroscopy at CLAS

Partial Wave Analysis

(a) resonance: X decay $X(2^{-+}) \rightarrow f_2(1275)\pi$ (b) isobar: $R_{\pi\pi}$ decay $f_2(1275) \rightarrow \pi\pi$ (c) $f_2(1275) \rightarrow \pi\pi$

2) Moments+Dispersion Relations

 Moments of the angular distribution in term of partial waves

$$\langle Y_{\lambda\mu} \rangle (E_{\gamma}, t, M) = \frac{1}{\sqrt{4\pi}} \int d\Omega_{\pi} \frac{d\sigma}{dt dM d\Omega_{\pi}} Y_{\lambda\mu}(\Omega_{\pi})$$

$$\langle Y_{00} \rangle = N \left[|S|^{2} + |P_{-}|^{2} + |P_{0}|^{2} + |P_{+}|^{2} + |D_{-}|^{2} + |D_{0}|^{2} + |D_{+}|^{2} + |F_{-}|^{2} + |F_{0}|^{2} + |F_{+}|^{2} \right]$$

- Parametrize partial waves in term of known ππ phase shift and unknown coefficients using Dispersion Relations
- Derive partial wave cross sections to compare with models

PWA with Isobar Model

$\gamma p \rightarrow \pi^+ \pi^+ \pi^-(n)$

- ► Possible evidence of exotic meson $\pi_1(1600)$ in $\pi p \rightarrow (3\pi)^- p$ (E852-Brookhaven)
- Not confirmed in a re-analysis of a higher statistic sample

- Clear evidence of nonexotic 2⁺⁺ state a₂(1320)
- No-evidence of exotic 1⁻⁺ state π₁(1600)
- Relevance of baryon resonance background

PWA in CLAS is feasible!

Raffaella De Vita, INFN-Genova

Moments of the Di-Pion Angular Distribution

$3.2 \text{ GeV} < E_{\gamma} < 3.4 \text{ GeV}$

Raffaella De Vita, INFN-Genova

Meson Spectroscopy at CLAS

New High Statistics Photon run: g12

Search for new forms of hadronic matter in photoproduction on the proton

- Data taking completed in 2008
- Photon Energy up to 5.4 GeV
- More than 26 billion triggers (2-prong + 3-prong)
- Total Luminosity: 68 pb⁻¹

Several exclusive channels are being analyzed

Craig Bookwalter (FSU): Johann Goetz (UCLA): Mukesh Saini (FSU): Diane Schott (FIU): Jane Spriggs (RPI):

$$\begin{split} \gamma p &\to \pi^+ \pi^+ \pi^-(n) \\ \gamma p &\to K^+ K^+ \ \Xi^{*-} \ (1530) \\ \gamma p &\to p K^+ K^- \ (\eta/\pi) \\ \gamma p &\to p \pi^+ \pi^-(\eta) \\ \gamma p &\to \pi^+ K^+ K^-(n) \end{split}$$

A hint of the new data

Raffaella De Vita, INFN-Genova

Coherent Meson Production on Nuclei

★ Simper PWA: S=I=0 target acts as spin and parity filter for final state mesons ★ Production cross section expected ~ $e^{-bt} |A F_A(t)|^2 \rightarrow low -t$ kinematic

Meson spectroscopy on ⁴He γ^{4} He \rightarrow ⁴He $\pi^{0}\eta$ γ^{4} He \rightarrow ⁴He $\pi^{0}\eta'$

- ★ Strongest evidence of $J^{PC}=1^{-+}$ π₁(1400) exotic meson π⁻p→ nηπ⁰ in E852-Brookhaven
- ***** Search for a resonance in P-wave in $\pi^0\eta$ and $\pi^0\eta'$
- ★ Known (non-exotic) resonances can be used as a benchmark (e.g. J^{PC}=2⁺⁺ a₂(1232))

EG6: Meson spectroscopy in coherent production on ⁴He

- 6 GeV electron beam on target on high pressure gas target
- scattered electron at very small angles \rightarrow quasi-real photo-production
- search for exotics in $\pi\eta$, $\pi\eta'$ final states
- recoiling nucleus detected in Radial TPC
- hadronic final state detected in CLAS
- data taking in fall 2009

Analysis of existing CLAS data shows clear peaks associated to knowsomesensriforward-focusing of Moeller electrons and bending of recoiepue(eu)pin and pending of

 PbW<u>Q4 calorimeter</u> for improved 750 photon acceptance at forward angles500

The Technique works!!

Raffaella De Vita, INFN-Genova

Meson Spectroscopy at CLAS